POBLACIÓN
Llamamos población estadística, universo o colectivo al conjunto de referencia sobre el cual van a recaer las observaciones.
INDIVIDUOS
Se llama unidad estadística o individuo a cada uno de los elementos que componen la población estadística. El individuo es un ente observable que no tiene por qué ser una persona, puede ser un objeto, un ser vivo, o incluso algo abstracto.
MUESTRA
Es un subconjunto de elementos de la población. Se suelen tomar muestras cuando es difícil o costosa la observación de todos los elementos de la población estadística.
COMENTARIO:
Estos temas son muy destacados en el curso de estadistica pues siempre en alguna ocacion se van a utilizar para el desarrollo de algunas tablas elaboradas en el mismo.
jueves, 27 de marzo de 2008
EL DIAGRAMA DE TALLO Y HOJA
Es una técnica estadística para representar un conjunto de datos. Cada valor numérico se divide en dos partes. El o los dígitos principales forman el tallo y los dígitos secundarios las hojas. Los tallos están colocados a lo largo del eje vertical, y las hojas de cada observación a lo largo del eje horizontal.
Ejemplo
La siguiente distribución de frecuencia muestra el número de anuncios comerciales pagados por los 45 miembros de Greater Buffalo Automobile Dealer´s Association en 1999. Observemos que 7 de los 45 comerciantes pagaron entre 90 y 99 anuncios (pero menos de 100). Sin embargo, ¿El numero de comerciantes pagados en esta clase se agrupan en alrededor de 90, están dispersos a lo largo de toda clase, o se acumulan alrededor de 99? No podemos saberlo.
# De anuncios comprados Frecuencia
80 a 90 2
90 a 100 7
100 a 110 6
110 a 120 9
120 a 130 8
130 a 140 7
140 a 150 3
150 a 160 3
Total 45
Es una tecnica que se puede utilizar en el curso de estadistica para facilitat el trabajo en el cual los digitos principales forman el tallo y los digitos segundarios las hojas con el cual el estudiante obtiene una tecnica mas en el mismo.
Es una técnica estadística para representar un conjunto de datos. Cada valor numérico se divide en dos partes. El o los dígitos principales forman el tallo y los dígitos secundarios las hojas. Los tallos están colocados a lo largo del eje vertical, y las hojas de cada observación a lo largo del eje horizontal.
Ejemplo
La siguiente distribución de frecuencia muestra el número de anuncios comerciales pagados por los 45 miembros de Greater Buffalo Automobile Dealer´s Association en 1999. Observemos que 7 de los 45 comerciantes pagaron entre 90 y 99 anuncios (pero menos de 100). Sin embargo, ¿El numero de comerciantes pagados en esta clase se agrupan en alrededor de 90, están dispersos a lo largo de toda clase, o se acumulan alrededor de 99? No podemos saberlo.
# De anuncios comprados Frecuencia
80 a 90 2
90 a 100 7
100 a 110 6
110 a 120 9
120 a 130 8
130 a 140 7
140 a 150 3
150 a 160 3
Total 45
Es una tecnica que se puede utilizar en el curso de estadistica para facilitat el trabajo en el cual los digitos principales forman el tallo y los digitos segundarios las hojas con el cual el estudiante obtiene una tecnica mas en el mismo.
viernes, 14 de marzo de 2008
TEOREMA DE CHEBYCHEV:
TEOREMA DE CHEBYCHEV:
En probabilidad, la desigualdad de Chebyshev es un resultado estadístico que ofrece una cota inferior a la probabilidad de que el valor de una variable aleatoria con varianza finita esté a una cierta distancia de su esperanza matemática o de su media; equivalentemente, el teorema proporciona una cota superior a la probabilidad de que los valores caigan fuera de esa distancia respecto de la media. El teorema es aplicable incluso en distribuciones que no tienen forma de "curva de campana" y acota la cantidad de datos que están o no "en medio".
En probabilidad, la desigualdad de Chebyshev es un resultado estadístico que ofrece una cota inferior a la probabilidad de que el valor de una variable aleatoria con varianza finita esté a una cierta distancia de su esperanza matemática o de su media; equivalentemente, el teorema proporciona una cota superior a la probabilidad de que los valores caigan fuera de esa distancia respecto de la media. El teorema es aplicable incluso en distribuciones que no tienen forma de "curva de campana" y acota la cantidad de datos que están o no "en medio".
lunes, 10 de marzo de 2008
VARIABLE:
Una variable es un simbolo que representa un elemento no especificado de un conjunto dado. Dicho conjunto es llamado conjunto universal de la variable o universo de la variable, y cada elemento del conjunto es un valor de la variable. Sea x una variable cuyo universo es el conjunto {1,3,5,7,9,11,13}; entonces x tiene los valores 1,3,5,7,9,11,13. En otras palabras x puede reemplazarse por cualquier entero positivo impar menor que 14. Por esta razón, a menudo se dice que una variable es un reemplazo de cualquier elemento de su universo.
TIPOS DE VARIABLE:
Variables cualitativas: Son las variables que expresan distintas cualidades, características o modalidad. Cada modalidad que se presenta se denomina atributo o categoría y la medición consiste en una clasificación de dichos atributos. Las variables cualitativas pueden ser ordinales y nominales. Las variables cualitativas pueden ser dicotómicas cuando sólo pueden tomar dos valores posibles como sí y no, hombre y mujer o son politómicas cuando pueden adquirir tres o más valores. Dentro de ellas podemos distinguir:
Variable cualitativa ordinal: La variable puede tomar distintos valores ordenados siguiendo una escala establecida, aunque no es necesario que el intervalo entre mediciones sea uniforme, por ejemplo, leve, moderado, grave
Variable cualitativa nominal: En esta variable los valores no pueden ser sometidos a un criterio de orden como por ejemplo los colores o el lugar de residencia.
Variables cuantitativas: Son las variables que se expresan mediante cantidades numéricas. Las variables cuas además pueden ser:
Variable discreta: Es la variable que presenta separaciones o interrupciones en la escala de valores que puede tomar. Estas separaciones o interrupciones indican la ausencia de valores entre los distintos valores específicos que la variable pueda asumir. Un ejemplo es el número de hijos.
Variable continua: Es la variable que puede adquirir cualquier valor dentro de un intervalo especificado de valores. Por ejemplo el peso o la altura, que solamente limitado por la precisión del aparato medidor, en teoría permiten que siempre existe un valor entre dos cualesquiera.
MEDIDAS DE TENDENCIA CENTRAL:
La Media Aritmética
La medida de tendencia central más obvia que se puede elegir, es el valor obtenido sumando las observaciones y dividiendo esta suma por el número de observaciones que hay en el grupo. La media resume en un valor las características de una variable teniendo en cuenta a todos los casos. Solamente puede utilizarse con variables cuantitativas.
MODA:
Es el dato que más se repiten en la cuenta. Si existen dos datos que se repite un numero igual de veces entonces el conjunto será bimodal.
MEDIANA:
definiremos como mediana al valor de la variable que deja el mismo número de datos antes y después que él.
De acuerdo con esta definición el conjunto de datos menores o iguales que la mediana representarán el 50% de los datos, y los que sean mayores que la mediana representarán el otro 50% del total de datos de la muestra.
Matemáticamente hablando la mediana sería: Me = , si n es impar --> Me será la observación central de los valores, una vez que estos han sido ordenados en orden creciente o decreciente.
Una variable es un simbolo que representa un elemento no especificado de un conjunto dado. Dicho conjunto es llamado conjunto universal de la variable o universo de la variable, y cada elemento del conjunto es un valor de la variable. Sea x una variable cuyo universo es el conjunto {1,3,5,7,9,11,13}; entonces x tiene los valores 1,3,5,7,9,11,13. En otras palabras x puede reemplazarse por cualquier entero positivo impar menor que 14. Por esta razón, a menudo se dice que una variable es un reemplazo de cualquier elemento de su universo.
TIPOS DE VARIABLE:
Variables cualitativas: Son las variables que expresan distintas cualidades, características o modalidad. Cada modalidad que se presenta se denomina atributo o categoría y la medición consiste en una clasificación de dichos atributos. Las variables cualitativas pueden ser ordinales y nominales. Las variables cualitativas pueden ser dicotómicas cuando sólo pueden tomar dos valores posibles como sí y no, hombre y mujer o son politómicas cuando pueden adquirir tres o más valores. Dentro de ellas podemos distinguir:
Variable cualitativa ordinal: La variable puede tomar distintos valores ordenados siguiendo una escala establecida, aunque no es necesario que el intervalo entre mediciones sea uniforme, por ejemplo, leve, moderado, grave
Variable cualitativa nominal: En esta variable los valores no pueden ser sometidos a un criterio de orden como por ejemplo los colores o el lugar de residencia.
Variables cuantitativas: Son las variables que se expresan mediante cantidades numéricas. Las variables cuas además pueden ser:
Variable discreta: Es la variable que presenta separaciones o interrupciones en la escala de valores que puede tomar. Estas separaciones o interrupciones indican la ausencia de valores entre los distintos valores específicos que la variable pueda asumir. Un ejemplo es el número de hijos.
Variable continua: Es la variable que puede adquirir cualquier valor dentro de un intervalo especificado de valores. Por ejemplo el peso o la altura, que solamente limitado por la precisión del aparato medidor, en teoría permiten que siempre existe un valor entre dos cualesquiera.
MEDIDAS DE TENDENCIA CENTRAL:
La Media Aritmética
La medida de tendencia central más obvia que se puede elegir, es el valor obtenido sumando las observaciones y dividiendo esta suma por el número de observaciones que hay en el grupo. La media resume en un valor las características de una variable teniendo en cuenta a todos los casos. Solamente puede utilizarse con variables cuantitativas.
MODA:
Es el dato que más se repiten en la cuenta. Si existen dos datos que se repite un numero igual de veces entonces el conjunto será bimodal.
MEDIANA:
definiremos como mediana al valor de la variable que deja el mismo número de datos antes y después que él.
De acuerdo con esta definición el conjunto de datos menores o iguales que la mediana representarán el 50% de los datos, y los que sean mayores que la mediana representarán el otro 50% del total de datos de la muestra.
Matemáticamente hablando la mediana sería: Me = , si n es impar --> Me será la observación central de los valores, una vez que estos han sido ordenados en orden creciente o decreciente.
Suscribirse a:
Entradas (Atom)